Magnetic proximity switches Series CST - CSV and CSH

Reed, Electronic

- » Designed to fit into the cylinder profile barrel
- The three Series CST CSV
 CSH are suitable for all Camozzi's cylinder range
- » With or without M8 connector

Switches are available in two different versions: Reed with mechanical switching and electronic with electronic switching. The electronic versions are suggested for heavy duty with frequent operations and strong vibrations.

The magnetic proximity switches CST-CSV-CSH detect the position of the cylinder piston. When the internal contact is actuated by a magnetic field, the sensors complete an electrical circuit and provide an output signal to directly actuate a solenoid valve or a PLC. A yellow LED diode shows when the internal magnetic contact is closed.

GENERAL DATA

Models CST-...

CSV-...

Operation Reed contact

Electronic

Typer of output Static or electronic PNP

Type of contact Normally Open (NO) or Normally Closed (NC) contacts

Voltage See model characteristics
Max current See model characteristics

Max load Reed switches 8 W DC and 10 VA AC Electronic switches 6 W DC

Protection level IP 67

Materials Plastic body encapsulating epoxy resin cable in PVC

connector PVR
connector body in PU

Mounting Directly into the groove, or by means of adapters.

 Signalling
 By means of yellow diode Led

 Protections
 See model characteristics

 Switching time
 Reed switches <1,8 ms Electronic switches <1 ms</th>

Operating temperature $-10 \, ^{\circ}\text{C} \div 80 \, ^{\circ}\text{C}$

Electrical duration Reed switches 10.000.000 cycles Electronic switches 1.000.000.000 cycles

Electrical connection cable 2x0,14 (2m) high flexibility cable 3x0 14 (2m) high flexibility

cable 3x0,14 (2m) high flexibility connector M8 and cable 0,3 m

C⊀ camozzi

CODING EXAMPLE 5 2 0 CS N T SERIES CS

SWITCHES ELECTRICAL CONNECTIONS

Reed switches

BN = brown

BU = blue BK = black Electronic switches

BN = brown

BU = blue

BK = black

Connecting schemes in series

The Reed version with 3 wires allows the connection of several sensors in series, as there is no voltage drop between the supply and the load (see connecting scheme).

The voltage drop is 2,8V for the Reed sensors with 2 wires and 1V for Hall effect sensors with 3 wires.

BN = brown BU = blue BK = black L = load

Useful information for correct use of the magnetic sensors

The magnetic sensors consist of a reed switch which is enclosed in a glass bulb containing a rarified gas. The contacts, which are made of magnetic material (nickel-iron), are flexible and are coated, at the contact points with a high quality non-arcing material.

Switching is effected by means of a suitable magnetic field and actuation is achieved by means of the permanent magnet inside the piston. The two sensors are of the normally open type and, therefore, when they are subject to the effect of the magnetic field, they close the circuit.

The operating field of the sensors with respect to the magnetic piston is shown in this picture. The dimension b indicates the amplitude of the magnetic field or switching field during which the circuit is closed. The value H represents the operational hysteresis of the sensor with respect to the form and amplitude of the magnetic field. The operating field, as a result of hysteresis, is displaced by the dimension H in the opposite direction to movement of the piston.

The values b and H are shown in the table and are classified according to bore.

The maximum speed permitted for each cylinder is a function of the value b and the response time of the various components connected after the sensor.

The maximum speed for a cylinder guided by magnetic sensors is calculated as follows: b / t = Speed

where: b = contact stroke in mm (see table)

t = total reaction time in milli seconds of electric control components connected after the sensor Speed = maximum speed in m/second

CK CAMOZZI

CONTACT STROKE AND HYSTERESIS

Useful information for correct use of the magnetic sensors:

H = operational hysteresis of the sensor with respect to the form and amplitude of the magnetic field

b = contact stroke in mm

Series	Ø	b (mm)	H (mm)	Series	Ø	b (mm)	H (mm)
4-25	16	9,2	1,2	60	32	9,9	1
24-25	20	12	1	60	40	8,9	1,2
24-25	25	11,7	1,1	60	50	10,7	1
27	20	10,5	1,6	60	63	12,9	1,2
27	25	10,9	1,6	60	80	11,5	1,4
27	32	10,7	1,1	60	100	14,9	1,4
27	40	12,1	1,7	60	125	22	1
27	50	12,1	1,2	61	32	9	1
27	63	14,1	1,3	61	40	9,3	1,3
QΡ	12	10	1,3	61	50	11	1,6
QΡ	16	11,8	1,5	61	63	13,4	1,3
ΣP	20	11,1	1,6	61	80	13,2	1,6
QΡ	25	10,6	1,6	61	100	15,2	1,7
ΣP	32	12,7	1,2	61	125	22,1	1,3
QP	40	12,5	1,1	42	32	10,8	1,5
QP	50	15,4	1,6	42	40	11,2	1,6
QP	63	16,7	1,5	42	50	12,6	1,7
QP	80	13,2	1,7	42	63	14,1	1,7
QΡ	100	16,8	1,8	QCT	20	10	1,7
31	12	9,2	1,4	QCT	25	11,4	1,8
31	16	7,9	1,3	QCT	32	12,1	1,8
31	20	9,1	1,5	QCT	40	12,4	1,8
31	25	10,6	1,5	QCT	50	13,7	1,9
1	32	11,9	1,7	QCT	63	13,5	1,8
31	40	12,9	2,2	69	32	34,5	3,8
31	50	14,7	1,2	69	40	29,6	4,1
31	63	15,2	1,4	69	50	31,5	4,6
31	80	16,6	1,8	69	63	32,3	3,1

69

69

69

1,7

2

2

80

100

125

24

25,6

30,1

2,9

2,9

1,7

Series	Ø	b (mm)	H (mm)
62	32	10	1
62	40	11	1
62	50	12	1,2
62	63	13	1
62	80	13	1
62	100	16	1

16,8

24

31

40

40

100

160

200

Load curves

Electric circuit with protection against voltage spikes

DC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric ciruit with protection against the voltage spikes.

See picture above for a typical example.

Legend:

- 1 = Sensor
- 2 = Load
- 3 = Protection diode

Electric circuit with protection against voltage spikes

DC and AC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric ciruit with protection against the voltage spikes. See picture above for a typical example.

Legend:

- 1 = Sensor
- 2 = Load
- 3 = Protection varistor

AC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric circuit with protection against the voltage spikes. See picture above for a typical example.

Legend:

- 1 = Sensor
- 2 = Load
- C + R = Series of resistor and protection capacitor

CK CAMOZZI

Magnetic proximity switch Series CST

Length cable: 2 m or 5 m

* = Mod. CST-220 and CSV-220 suitable up to 230 V AC.

In case of polarity reversing the sensor will still be operating, but the LED diode won't turn on.

Mod.	Operation	Voltage (V)	Output	Max. current	Max Load	Protection
CST-220	Reed	10 ÷ 110 AC/DC *	-	250 mA	10VA/8W	None
CSV-220	Reed	10 ÷ 110 AC/DC *	-	250 mA	10VA/8W	None
CST-220-5	Reed	10 ÷ 110 AC/DC *	-	250 mA	10VA/8W	None
CST-232	Reed	5 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CSV-232	Reed	5 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CST-332	Electronic	10 ÷ 27 DC	PNP	100 mA	6W	Against polarity reversing and overvoltage
CSV-332	Electronic	10 ÷ 27 DC	PNP	100 mA	6W	Against polarity reversing and overvoltage

Magnetic proximity switch Series CST with male connector M8

Length cable 0,3 mt.

CSV

Mod.	Operation	Voltage (V)	Output	Max. current	Max Load	Protection
CST-250N	Reed	10 ÷ 110 AC/DC	-	250 mA	10VA/8W	None
CSV-250N	Reed	10 ÷ 110 AC/DC	-	250 mA	10VA/8W	None
CST-262	Reed	5 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CSV-262	Reed	5 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CST-362	Electronic	10 ÷ 27 DC	PNP	100 mA	6W	Against polarity reversing and overvoltage
CSV-362	Electronic	10 ÷ 27 DC	PNP	100 mA	6W	Against polarity reversing and overvoltage

C⊀ camozzi

Magnetic proximity switches with 2-wire or 3-wire cable Series CSH

For max. operating current see load curves diagrams.

In case of polarity reversing the sensor will still be operating, but the LED diode won't turn on.

Mod.	Operation	Voltage (V)	Output	Max current	Max Load	Protection
CSH-223-2	Reed	10 ÷ 30 AC/DC	-	250 mA	10VA/8W	Against polarity reversing
CSH-223-5	Reed	10 ÷ 30 AC/DC	-	250 mA	10VA/8W	Against polarity reversing
CSH-221-2	Reed	30 ÷ 230 AC30 ÷ 110 DC	-	250 mA	10VA/8W	Against polarity reversing
CSH-221-5	Reed	30 ÷ 230 AC30 ÷ 110 DC	-	250 mA	10VA/8W	Against polarity reversing
CSH-233-2	Reed	10 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CSH-233-5	Reed	10 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CSH-334-2	Electronic	10 ÷ 27 AC/DC	PNP	250 mA	6W	Against polarity reversing and overvoltage
CSH-334-5	Electronic	10 ÷ 27 AC/DC	PNP	250 mA	6W	Against polarity reversing and overvoltage

Magnetic proximity switches with male connector M8 Series CSH

For max. operating current see load curves diagrams.

In case of polarity reversing the sensor will still be operating, but LED diode won't turn on.

Mod.	Operation	Voltage (V)	Output	Max current	Max Load	Protection
CSH-253	Reed NO	10 ÷ 30 AC/DC	-	250 mA	10VA/8W	Against polarity reversing
CSH-263	Reed NO	10 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing
CSH-364	Electronic	10 ÷ 27 AC/DC	PNP	250 mA	6W	Against polarity reversing and overvoltage
CSH-463	Reed NC	10 ÷ 30 AC/DC	PNP	250 mA	10VA/8W	Against polarity reversing

Sensors Series CST - CSH

CST/CSH sensors can be directly mounted on the following cylinders:

Series 31 - 31R Series 32 - 32R

Series 52 Series 61

Series 62 (CSH only)

Series 69

Series QC - QCBF - QCTF

Sensors Series CSV

CST sensors must be assembled directly into the groove of cylinders: Series 50 ø 16÷25 Series QP - QPR ø 12÷16

Circular connectors M8, 3 Pin Female

With PU sheathing, non shielded cable.

Protection class: IP65

BN = Brown

BK = Black BU = Blue

In case of the use of sensors with two wires with connector M8 models CST-250N, CSV-250N, CSH-253 connect the brown wire to the input (+) and the black wire to the load.

Mod.	Length	
CS-2	2 m	
CS-5 CS-10	5 m	
CS-10	10 m	

Extension with connector M8, 3 Pin Male / Female

Non shielded

Mod.	cable length "A" (mt)	
CS-DW03HB-C250	2,5	
CS-DW03HB-C500	5	

Mounting brackets for sensors Series CST

Mod.	Cylinders series	Ø
S-CST-01	QP-QPR	20 ÷ 100
S-CST-01	50	32 ÷ 80

Mounting brackets for sensors Series CST - CSH

Materials:

- from S-CST-05÷12 stainless steel from S-CST-02÷04 and S-CST-18÷21 technopolymer.

Mod.	Cylinders series	Ø
S-CST-02	24-25-27	16
S-CST-03	24-25-27	20
S-CST-04	24-25-27	25
S-CST-05	94-95	16-20-25
S-CST-06	90-92-97	32
S-CST-07	90-92-97	40
S-CST-08	90-92-97	50
S-CST-09	90-92-97	63
S-CST-10	90	80
S-CST-11	90	100
S-CST-12	90	125
S-CST-18	27-42	32
S-CST-19	27-42	40
S-CST-20	27-42	50
S-CST-21	27-42	63

Mounting brackets for sensors Series CST and CSH

Mod.	Cylinders series	Ø
S-CST-25	60	32 ÷ 63
S-CST-26	60	80-100
S-CST-27	60	125
S-CST-28	40	160-200

Mounting brackets for sensors Series CST and CSH

For cylinders series 60 mounted with guides series 45NHT or 45NHB.

80 - 100

32 - 63

Mod.	Cylinders series	Ø
S-CST-45N1	60	32 ÷ 63
S-CST-45N2	60	80-100

Slot cover profile Mod. S-CST-500

Supplied with 500 mm tube

Slot cover profile for cylinders Series: 31 - 31 tandem and multi-position - QCT - QCB - QCBT-QCBF - 61 - 69 - 32 - 32 tandem and multi-position.

Mod.

S-CST-500