Magnetic proximity switches Series CST - CSV and CSH

Reed, Electronic

The magnetic proximity switches CST-CSV-CSH detect the position of the cylinder piston. When the internal contact is actuated by a magnetic field, the sensors complete an electrical circuit and provide an output signal to directly actuate a solenoid valve or a PLC. A yellow LED diode shows when the internal magnetic contact is closed.
»Designed to fit into the cylinder profile barrel
» The three Series CST - CSV - CSH are suitable for all Camozzi's cylinder range
» With or without M8 connector

Switches are available in two different versions: Reed with mechanical switching and electronic with electronic switching. The electronic versions are suggested for heavy duty with frequent operations and strong vibrations.

GENERAL DATA

Models	CST-...
	CSV-...
	CSH-...
Operation	Reed contact
	Electronic
Typer of output	Static or electronic PNP
Type of contact	Normally Open (NO) or Normally Closed (NC) contacts
Voltage	See model characteristics
Max current	See model characteristics
Max load	Reed switches 8 W DC and 10 VA AC
	Electronic switches 6 W DC

CODING EXAMPLE

CS	T	-	2	2	0	N	-	5

CS	SERIES
T	$\begin{aligned} & \text { SLOT TYPE } \\ & \mathrm{T}=\mathrm{T} \text {-slot } \\ & \mathrm{V}=\mathrm{V} \text {-slot } \\ & \mathrm{H}=\text { frontal inserting slot } \end{aligned}$
2	OPERATION 2 ＝reed NO 3 ＝electronic 4 ＝reed NC
2	CONNECTIONS $\begin{aligned} & 2=2 \text { wires (Reed only) } \\ & 3=3 \text { wires } \\ & 5=2 \text { wires with M8 connector (Reed only) } \\ & 6=3 \text { wires with M8 connector } \end{aligned}$
0	$\begin{aligned} & \text { POWER SUPPLY VOLTAGE } \\ & 0=10-110 \mathrm{~V} \text { DC; } 10-230 \mathrm{~V} \mathrm{AC} \mathrm{(PNP)} \\ & 1=30-110 \mathrm{~V} \text { DC; } 30-230 \mathrm{~V} \mathrm{AC} \mathrm{(PNP)} \\ & 2=3 \text { wires cst (PNP) } \\ & 3=10-30 \mathrm{~V} \text { AC/DC (PNP) } \\ & 4=10-27 \mathrm{~V} \text { DC (PNP) } \end{aligned}$
N	```NOTE N = ACCORDING TO NORM (CST/CSV-250N only)```
5	LENGTH OF THE CABLE（for CSH only）： $\begin{aligned} & 2=2 \mathrm{~m} \\ & 5=5 \mathrm{~m} \end{aligned}$

SWITCHES ELECTRICAL CONNECTIONS

[^0]Electronic switches
BN＝brown
$\mathrm{BU}=$ blue
$\mathrm{BK}=$ black

Connecting schemes in series

The Reed version with 3 wires allows the connection of several sensors in series, as there is no voltage drop between the supply and the load (see connecting scheme).
The voltage drop is $2,8 \mathrm{~V}$ for the Reed sensors with 2 wires and 1V for Hall effect sensors with 3 wires.
$\mathrm{BN}=$ brown
BU = blue
BK = black
$L=$ load

Useful information for correct use of the magnetic sensors

The magnetic sensors consist of a reed switch which is enclosed in a glass bulb containing a rarified gas. The contacts, which are made of magnetic material (nickel-iron), are flexible and are coated, at the contact points with a high quality non-arcing material.
Switching is effected by means of a suitable magnetic field and actuation is achieved by means of the permanent magnet inside the piston. The two sensors are of the normally open type and, therefore, when they are subject to the effect of the magnetic field, they close the circuit.
The operating field of the sensors with respect to the magnetic piston is shown in this picture. The dimension b indicates the amplitude of the magnetic field or switching field during which the circuit is closed. The value H represents the operational hysteresis of the sensor with respect to the form and amplitude of the magnetic field. The operating field, as a result of hysteresis, is displaced by the dimension H in the opposite direction to movement of the piston.
The values b and H are shown in the table and are classified according to bore.
The maximum speed permitted for each cylinder is a function of the value b and the response time of the various components connected after the sensor.
The maximum speed for a cylinder guided by magnetic sensors is calculated as follows: $\mathrm{b} / \mathrm{t}=$ Speed
where: $\mathrm{b}=$ contact stroke in mm (see table)
$t=$ total reaction time in milli seconds of electric control components connected after the sensor

Speed $=$ maximum speed in $\mathrm{m} / \mathrm{sec}$ ond

CONTACT STROKE AND HYSTERESIS

Useful information for correct use of the magnetic sensors:
$\mathrm{H}=$ operational hysteresis of the sensor with respect to the form and amplitude of the magnetic field $\mathrm{b}=$ contact stroke in mm

Series	\varnothing	b (mm)	H (mm)	Series	\varnothing	b (mm)	H (mm)
24-25	16	9,2	1,2	60	32	9,9	1
24-25	20	12	1	60	40	8,9	1,2
24-25	25	11,7	1,1	60	50	10,7	1
27	20	10,5	1,6	60	63	12,9	1,2
27	25	10,9	1,6	60	80	11,5	1,4
27	32	10,7	1,1	60	100	14,9	1,4
27	40	12,1	1,7	60	125	22	1
27	50	12,1	1,2	61	32	9	1
27	63	14,1	1,3	61	40	9,3	1,3
QP	12	10	1,3	61	50	11	1,6
QP	16	11,8	1,5	61	63	13,4	1,3
QP	20	11,1	1,6	61	80	13,2	1,6
QP	25	10,6	1,6	61	100	15,2	1,7
QP	32	12,7	1,2	61	125	22,1	1,3
QP	40	12,5	1,1	42	32	10,8	1,5
QP	50	15,4	1,6	42	40	11,2	1,6
QP	63	16,7	1,5	42	50	12,6	1,7
QP	80	13,2	1,7	42	63	14,1	1,7
QP	100	16,8	1,8	QCT	20	10	1,7
31	12	9,2	1,4	QCT	25	11,4	1,8
31	16	7,9	1,3	QCT	32	12,1	1,8
31	20	9,1	1,5	QCT	40	12,4	1,8
31	25	10,6	1,5	QCT	50	13,7	1,9
31	32	11,9	1,7	QCT	63	13,5	1,8
31	40	12,9	2,2	69	32	34,5	3,8
31	50	14,7	1,2	69	40	29,6	4,1
31	63	15,2	1,4	69	50	31,5	4,6
31	80	16,6	1,8	69	63	32,3	3,1
31	100	16,8	1,7	69	80	24	2,9
40	160	24	2	69	100	25,6	2,9
40	200	26	2	69	125	30,1	1,7

Series	\varnothing	$\mathrm{b}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$
$\mathbf{6 2}$	32	10	1
$\mathbf{6 2}$	40	11	1
$\mathbf{6 2}$	50	12	1,2
$\mathbf{6 2}$	63	13	1
$\mathbf{6 2}$	80	13	1
$\mathbf{6 2}$	100	16	1

Load curves

Load curve - CSH

Load curve - CST/CSV

Load curve - CST/CSV

Load curve - CST/CSV

Load curve - CSH, CST/CSV

DC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric ciruit with protection against the voltage spikes.
See picture above for a typical example.
Legend:
1 = Sensor
2 = Load
3 = Protection diode

Electric circuit with protection against voltage spikes

DC and AC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric ciruit with protection against the voltage spikes.
See picture above for a typical example.
Legend:
1 = Sensor
2 = Load
3 = Protection varistor

AC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric circuit with protection against the voltage spikes.
See picture above for a typical example.
Legend:
1 = Sensor
2 = Load
C + R = Series of resistor and protection capacitor

In case of polarity reversing
the sensor will still be operating, but the LED diode wont turn on.

Magnetic proximity switch Series CST

Length cable: 2 m or 5 m

* $=$ Mod. CST-220 and CSV-220 suitable up to 230 V AC.

CSV

CST

In case of polarity reversing the sensor will still be operating, but the LED diode wont turn on.

Magnetic proximity switch Series CST with male connector M8
Length cable $0,3 \mathrm{mt}$.

BN

CST

Mod.	Operation	Voltage (V)	Output	Max. current	Max Load	Protection
CST-250N	Reed	$10 \div 110 \mathrm{AC} / \mathrm{DC}$	-	250 mA	10VA/8W	None
CSV-250N	Reed	$10 \div 110 \mathrm{AC} / \mathrm{DC}$	-	250 mA	10VA/8W	None
CST-262	Reed	$5 \div 30 \mathrm{AC} / \mathrm{DC}$	PNP	250 mA	10VA/8W	
CSV-262	Reed	$5 \div 30 \mathrm{AC} / \mathrm{DC}$	PNP	250 mA	Against polarity reversing	
CST-362	Electronic	$10 \div 27 \mathrm{DC}$	PNP	$10 \mathrm{VA} / 8 \mathrm{~W}$	Against polarity reversing	
CSV-362	Electronic	$10 \div 27 \mathrm{DC}$	PNP	100 mA	AW	Against polarity reversing and overvoltage

Magnetic proximity switches with 2－wire or 3－wire cable Series CSH
For max．operating current see load curves diagrams．

Mod．	Operation	Voltage（V）	Output	Max current	Max Load	Protection
CSH－223－2	Reed	$10 \div 30$ AC／DC	－	250 mA	10VA／8W	Against polarity reversing
CSH－223－5	Reed	$10 \div 30 \mathrm{AC} / \mathrm{DC}$	－	250 mA	10VA／8W	Against polarity reversing
CSH－221－2	Reed	$30 \div 230$ AC30 $\div 110$ DC	－	250 mA	10VA／8W	Against polarity reversing
CSH－221－5	Reed	$30 \div 230$ AC30 $\div 110$ DC	－	250 mA	10VA／8W	Against polarity reversing
CSH－233－2	Reed	$10 \div 30 \mathrm{AC} / \mathrm{DC}$	PNP	250 mA	10VA／8W	Against polarity reversing
CSH－233－5	Reed	$10 \div 30$ AC／DC	PNP	250 mA	10VA／8W	Against polarity reversing
CSH－334－2	Electronic	$10 \div 27$ AC／DC	PNP	250 mA	6 W	Against polarity reversing and overvoltage
CSH－334－5	Electronic	$10 \div 27$ AC／DC	PNP	250 mA	6W	Against polarity reversing and overvoltage

Sensors Series CST - CSH
CST/CSH sensors can be directly
mounted on the following cylinders:
Series 31 - 31 R
Series $32-32 R$
Series 52
Series 61
Series 62 (CSH only)
Series 69
Series QC - QCBF - QCTF

CSH

CST sensors must be assembled
directly into the groove of cylinders:
Series 50 ø 16 $\div 25$
Series QP - QPR ø $12 \div 16$

Circular connectors M8, 3 Pin Female
With PU sheathing, non shielded
cable.
Protection class: IP65

BN = Brown
BK = Black
$\mathrm{BU}=$ Blue

In case of the use of sensors with two wires
with connector M8 models CST-250N, CSV-
$250 \mathrm{~N}, \mathrm{CSH}-253$ connect the brown wire to the input (+) and the black wire to the load.

Mod.	Length	
CS-2	2 m	
CS-5	5 m	
CS-10	10 m	Products designed for industrial applications. $1 / 9.05 .09$

[^0]: Reed switches
 BU＝blue
 BK＝black

